What are you looking for?

Enter search term

We are sorry!

Unfortunately no results were found.

Login

Sei un nuovo cliente?

Registrati e assicurati tanti vantaggi:

Verifica della disponibilità dei prodotti
Ordinazioni successive rapide e cronologia degli ordini
Raccomandazioni personali sui prodotti
Pagamento con fattura

Help & Contact

Contatta HANSA-FLEX

Hai domande sullo shop online o sui nostri prodotti?
Puoi contattare il nostro servizio clienti:

08:00 AM -12:00 AM 01:00 PM - 05:00 PM

Oppure puoi utilizzare le nostre FAQ

Troverai le risposte alle domande più frequenti
.

Helping people help themselves
Vai alle FAQ

HK 2 APF

Gear pump group 2 type 2APF

Characteristics

Design
  • Gear pump group 2. 
Connection drive side
  • Hole pattern 96.2 x 71.5 – Ø 36.5. 
Shaft
  • conical shaft 1:8 
Connection suction side
  • pump flange, European standard 
Connection pressure side
  • pump flange, European standard 
Material
  • housing: aluminium 
  • front flange, end cover: cast steel. 
Media
  • HL - HLP DIN 51524 Part 1/2 
Viscosity
  • 20 to 100 cSt 
Customs tariff number
  • 84136031 
All characteristics

Descrizione del prodotto

Notes
Tightening torque of the fastening nut on the shaft: 40 Nm

Product variants

16 Results
Show dimensional drawing
Identifier
VFU (cm³)
Direction of rotation
p1 max. (bar)
p2 max. (bar)
4 cm³
anti-clockwise rotating 
200 bar
230 bar
6 cm³
anti-clockwise rotating 
200 bar
230 bar
8 cm³
anti-clockwise rotating 
200 bar
230 bar
10 cm³
anti-clockwise rotating 
200 bar
230 bar
14 cm³
anti-clockwise rotating 
200 bar
230 bar
VFU = conveying volume per revolution
LK = pitch circle diameter
p1 = continuous pressure
p2 = working pressure
p3 = maximum pressure

Shows 10 of 16

Column selection

VFU (cm³)
Direction of rotation
p1 max. (bar)
p2 max. (bar)
p3 max. (bar)
Min. speed (r/min)
Max. speed (r/min)
A (mm)
B (mm)
Flange size suction side
Flange size pressure side
VFU = conveying volume per revolution
LK = pitch circle diameter
p1 = continuous pressure
p2 = working pressure
p3 = maximum pressure